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RNA sequencing reveals the complex regulatory
network in the maize kernel
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RNA sequencing can simultaneously identify exonic polymorphisms and quantitate gene

expression. Here we report RNA sequencing of developing maize kernels from 368 inbred

lines producing 25.8 billion reads and 3.6 million single-nucleotide polymorphisms. Both the

MaizeSNP50 BeadChip and the Sequenom MassArray iPLEX platforms confirm a subset of

high-quality SNPs. Of these SNPs, we have mapped 931,484 to gene regions with a mean

density of 40.3 SNPs per gene. The genome-wide association study identifies 16,408

expression quantitative trait loci. A two-step approach defines 95.1% of the eQTLs to a 10-kb

region, and 67.7% of them include a single gene. The establishment of relationships between

eQTLs and their targets reveals a large-scale gene regulatory network, which include the

regulation of 31 zein and 16 key kernel genes. These results contribute to our understanding of

kernel development and to the improvement of maize yield and nutritional quality.
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M
aize is both a model organism for genetic studies and an
important crop for food, fuel and feed1. Maize kernels
accumulate a large amount of storage compounds such

as starch, oil and protein. Understanding the genetic regulation of
their synthesis and accumulation will be of great value to maize
improvement for yield and nutritional quality. In the last decades,
many genes that are essential for maize kernel development and
nutrient accumulation have been characterized using genetic
mutants or map-based cloning methods2,3. Linkage or association
analyses have identified more than a hundred of loci or
candidate genes underlying kernel-related traits4,5. Moreover,
the transcriptome profiles of maize kernel have already been
analysed in two elite inbred lines6–8, identifying candidate genes
and coexpression networks involved in kernel developmental
pathways. However, our understanding of the processes and the
gene regulatory networks in maize kernels remain limited.

With the development of technology and significant reduction
in the cost of next-generation sequencing, RNA-seq technology
has been successfully used for both single-nucleotide polymorph-
ism (SNP) detection and expression quantitative trait loci (eQTL)
analysis to reveal gene regulatory networks that are active in
specific tissues9,10. In this study, we explore the gene expression
profiles of the developing maize kernel by RNA sequencing of 368
inbred lines at 15 days after pollination (DAP). Our purpose is to
explore the sequence diversity across the inbred lines, especially
in the gene regions, and to discover the gene regulatory networks
employed in immature maize kernels. The results show that there
are extensive gene expression variation and sequence diversity
among the inbred lines and 931,484 of 1,026,244 high-quality
SNPs are mapped to the gene regions. The genome-wide
association study (GWAS) identifies 16,408 eQTL; 95.1% of the
eQTLs are within a 10-kb region and 67.7% of them include a
single gene. The establishment of relationships between eQTLs
and their targets reveals a large-scale gene regulatory network.
These results can be used to systematically examine the potential
effects of gene variants on kernel-associated traits and biological
pathways.

Results
RNA-seq reveals extensive diversity in maize transcripts. The
poly(A)þ transcriptome of immature kernels (15 DAP) from
368 maize inbred lines were sequenced using 90-bp paired-end
Illumina sequencing with libraries of 200-bp insert sizes. After
filtering out reads with low sequencing quality, 70.1 million reads
were maintained in each sample (Supplementary Data 1). In total,
25.8 billion high-quality reads were obtained. On average, 71.0%
of the reads were mapped to the B73 reference genome (AGPv2)
and 70.3% of the reads to the maize annotated genes (filtered-
gene set, release 5b). Among the genes with RNA-seq reads,
71.6% have coverage of 450% of the gene length (Fig. 1a). Of all
the reads mapped to the genome, 83.5% were mapped uniquely
and these reads were used to build the consensus sequence for
each sample (Supplementary Data 1). After quality control, we
identified totally 3,619,762 SNPs using B73 as the reference by a
two-step procedure with multiple criteria11,12 (Table 1). Among
them, 2,636,164 SNPs were in the exons, which is 5.6 times
greater than that previously reported in a group of six elite maize
inbred lines (468,900 exonic SNPs)13, 7.5 times higher than that
reported in the nested association mapping (NAM) population
(352,000 exonic SNPs)14 and 35.7 times higher than that reported
between B73 and Mo17 (73,900 exonic SNPs)14. Moreover, 69.7%
of SNPs in the NAM population and 87.5% of SNPs in the
B73/Mo17 were included in our SNP set (Fig. 1b). Overall, our
SNP data set included 1.6 million of novel SNPs. Compared with
the B73 reference genome, the mean number of loci carrying the

alternative allele of any given inbred line was 235,651, with a
range from 101,020 to 313,630 SNPs (Supplementary Data 1).

Missing genotypes (Supplementary Table S1) were imputed
using fastPHASE15. By randomly masking B1% of SNP sites, a
simulation was performed to determine the imputation accuracy
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Figure 1 | Gene coverage by reads and the comparison of SNPs with
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this study before and after filtering sites with a missing rate 40.6,

respectively.

Table 1 | Summary of SNPs in 368 maize inbred lines.

SNP data set Number
of SNPs

Number
of SNPs in

gene region

Number
of genes

Mean number
of SNPs
per gene

Total 3,619,762 2,636,164 32,259 81.7
SNPs with missing
rate o0.6

1,026,244 931,484 23,106 40.3

SNPs with
MAF Z0.05*

525,105 477,797 22,014 21.7

MAF, minor allele frequency; SNP, single-nucleotide polymorphism.
*The MAF of each SNP was calculated after the imputation.
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(Supplementary Fig. S1). The results indicate that the imputation
accuracy was 99.3% when the missing data rate cutoff value was
set to 0.6. Therefore, 1,026,244 SNPs with a missing data rate of
o0.6 were used for imputation to infer missing genotypes. All
these SNPs were named according to their chromosome positions
in the B73 reference genome (Methods).

SNP quality control and distribution. To evaluate the repro-
ducibility of genotyping by RNA-seq, we first compared the
genotypes of three pairs of biological replicates SK, Han21 and
Ye478. The concordant rates between each pair of replicates were
499% (Supplementary Table S2), indicating that our sequencing
and SNP calling methods were reproducible. Second, the geno-
types of this study were compared with the genotypes determined
by the MaizeSNP50 BeadChip16. By comparing the overlapping
genotypes, the concordant rate between the genotypes determined
by RNA-seq and those by the MaizeSNP50 BeadChip was 98.6%
before imputation and 96.7% after imputation (Supplementary
Table S3, Supplementary Fig. S2 and Supplementary Data 2).
Given the significant difference of the minor allele frequency
(MAF) of the overlapped SNPs from that of the non-overlapped
SNPs (Supplementary Fig. S3), we further compared the
concordant rates of SNPs with different MAFs and found
that all the SNPs have concordant rates higher than 96%
(Supplementary Table S4). Considering that most of the SNPs in
the MaizeSNP50 BeadChip are common, 355 SNP sites
containing newly identified rare alleles were randomly selected
and validated across 96 inbred lines by the Sequenom MassArray
iPLEX genotyping system (Supplementary Table S5). In addition,
we amplified ten genes by PCR from genomic DNA and
sequenced these PCR products using an ABI3730. The 201
SNPs detected by RNA-seq in these genes had a mean concordant
rate of 96.1% with those detected by sequencing PCR products
from genomic DNA (Supplementary Table S6). These data
indicate that the SNP accuracy in the current study is high and
comparable with previous studies in maize13,14.

Among the 1,026,244 SNPs, 931,484 were mapped to the gene
regions of 23,106 genes (filtered-gene set, release 5b), accounting
for 90.8% of the SNPs (Supplementary Table S7). On average,
there are 40.3 SNPs per gene (Supplementary Data 3). The
distribution of SNPs in various regions of transcripts was also
compared, showing that 30-untranslated regions have the highest
SNP densities (one SNP per 37 bp), followed by the CDS (coding
DNA sequence) and 50-untranslated region (one SNP per 62 bp
and one SNP per 61 bp; Supplementary Fig. S4). Overall, SNP
density in the transcript region is approximately one SNP per
54 bp. Compared with the SNPs in the NAM population, more
rare alleles and more genic alleles are identified in this study
(Fig. 2). These newly discovered variants showed a similar ratio of
transition/transversion rate with known variants (Supplementary
Table S8). Of all the SNPs in gene regions, 5,146 SNPs were
predicted as large effect variations, including 2,347 SNPs
predicted to cause nonsense mutations, 112 SNPs predicted to
cause start codon disruption, 571 SNPs predicted to cause stop
codon disruption and 2,116 SNPs predicted to destroy splice sites
(Supplementary Data 4). In the CDS regions, a total of 244,280
SNPs (48.3%) were annotated as synonymous mutations and
259,465 SNPs (51.3%) as non-synonymous mutations
(Supplementary Table S9).

The distribution of SNPs and genes along the chromosomes
was calculated using 1-Mb sliding windows (Supplementary
Fig. S5). As expected, the SNP density is related to the gene
density. On all chromosomes, the SNP density is low in regions
around centromeres, which are also genomic regions with low
gene densities; however, exceptions to this correlation could be

found, such as regions with high gene density and low SNP
density. Because of the sample size and to the inherent
relationship between those samples, the overall genome diversity
among the 368 inbred lines has a Watterson’s y of 0.0196, which
is much higher than that reported previously13,14.

The gene expression profile is highly variable. To quantify the
expression of known genes and transcripts, read counts for each
whole expressed gene and individual transcripts of the gene were
calculated and scaled according to the definition of RPKM (reads
per kilobase of exon model per million mapped reads)17. The
28,769 genes and 42,211 transcripts having mapped sequencing
reads in 450% of the inbred lines were used for eQTL mapping.
Of the expressed genes, 97.3% had a mean quantification of more
than 10 mapped reads per inbred line, 73.6% had more than 50
reads and 64.1% had more than 100 reads (Supplementary Fig.
S6). On average, there are 1,540.7 reads for each whole gene and
1,050.2 reads for each individual transcript. The 100 most highly
expressed genes in maize kernel at 15 DAP are listed by the order
of mean expression in population (Supplementary Table S10).
These genes include members of the globulin, oleosin and zein
gene families, as well as other important genes responsible for
grain filling. Of the 100 most highly expressed genes, 30 genes
were members of the zein gene family, which is in agreement with
a previous report on gene expression in maize kernel at 15 DAP7.
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Figure 2 | Comparison of the newly identified SNPs with the SNPs

in NAM. (a) MAF of SNPs. (b) The distribution of SNPs in the genome.
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The gene expression profile is highly variable among inbred
lines. First, the transcripts of 17,240 genes were detected in all the
inbred lines, which may be defined as the core expressed genes of
maize kernels at 15 DAP. The remaining 11,529 genes were only
detected in some of the inbred lines and absent in other inbred
lines. Second, the expression levels of the whole genes and
individual transcripts were highly variable across inbred lines
(Table 2). Significantly, there are 5,246 genes and 9,233 trans-
cripts that showed a range of expression variation greater than
fourfold. Through gene ontology (GO) enrichment analysis18, the
above 5,246 genes with large expression difference among inbred
lines were predicted to be involved in protein metabolism and
biosynthetic processes (Supplementary Fig. S7).

Large-scale local and distant eQTLs are discovered by GWAS.
For the purpose of GWAS analysis, SNPs with a MAF of o5%
were filtered out (Supplementary Fig. S8). The resulting 525,105
(51.2%) SNPs were merged with the SNP data from the Mai-
zeSNP50 BeadChip to represent the genotypes of the individual
inbred lines; the merged data sets included 558,650 SNPs.
Considering the population structure, genetic relatedness among
the inbred lines (Supplementary Fig. S9) and the main
confounding factors of expression variability, the linear mixed
model in the TASSLE software19 was used for association analysis
of the expression levels of 28,769 genes (after normal quantile
transformation). The validity of association significance was further
examined by including the hidden confounding factors of
expression variability in the model, which removed the possible
artefacts introduced by confounding factors in gene expression20.
The quantile–quantile plot resulting from GWAS for 100 randomly

selected genes was shown in Supplementary Fig. S10. This GWAS
revealed 591,470 significant associated SNPs by controlling false
discovery rate (FDR) of 0.05 with the Benjamini–Hochberg (BH)
method (BH rejection threshold: Po2.12� 10� 6). For the 42,211
transcripts, 785,548 significant associated SNPs were detected by
controlling FDR at the same level (BH rejection threshold:
Po1.89� 10� 6). A two-step method was applied to deal with
the association of multiple SNPs with one trait, leading to the
identification of eQTL regions (Supplementary Fig. S11). First, we
identified 54,764 candidate eQTL from 591,470 significantly
associated SNPs by grouping SNPs that are separated by an
interval of o5 kb. The most significantly associated SNP in each
eQTL region was defined as the lead SNP and the association
significance (P-value) of an eQTL is represented by its lead
SNP. Second, the lead SNP of a candidate eQTL was compared
with all of the candidate eQTL of the same gene one by one.
If the linkage disequilibrium (LD; r2) between this candidate
eQTL and another more significant candidate eQTL is 40.1
(a LD decay cutoff value used in diverse maize lines14,21), this
candidate eQTL will be removed, which substantially avoids the
false positives. Finally, 16,408 eQTLs were identified for 14,375
genes (Table 3). Among the genes with eQTLs, 12,605 genes
(87.7%) had only 1 eQTL, 1,535 genes had 2 eQTLs and 235
genes had 3 or more eQTLs (Supplementary Fig. S12). In an
analogous manner, 22,028 eQTLs were identified for 19,873
transcripts, corresponding to 15,437 genes (Table 3 and
Supplementary Fig. S13).

When the start positions of the mapped genes with eQTLs were
plotted against the position of the lead SNP of the eQTL, even
after controlling genome-wide error of 0.05 with Bonferroni
method (Bonferroni threshold: Po3.11� 10� 12), a strong
enrichment was observed along the diagonal, indicating a strong
local regulatory relationship of gene expression (Fig. 3a).
Excluding the eQTLs where the lead SNPs were located within
the target gene, the density of lead SNPs peaked around the gene
and dropped sharply down to plateau at B20 kb away from their
associated gene (Fig. 3b). Therefore, the eQTLs with lead SNPs
located within the gene or up to 20 kb from their associated gene
were defined as local eQTLs. Otherwise, eQTLs were designated
as distant eQTLs. On the basis of this criterion, 9,050 local eQTLs
(55.2%) and 7,358 distant eQTLs (44.8%) were detected (Table 3).
As local eQTLs tend to have larger effects than distant eQTLs
(Fig. 3c), the proportion of local eQTLs gradually increased from
55.2 to 68.7% when the P-value was adjusted from the BH
threshold to the Bonferroni threshold (Supplementary Fig. S14),
which is consistent with previous reports in Arabidopsis and
maize22,23. The resulting eQTLs for individual transcripts showed

Table 2 | Expression variation for the whole genes and
individual transcripts.

Range of fold change Number of genes Number of transcripts

1–2 12,377 11,900
2–4 8,211 13,314
4–8 3,274 5,979
8–16 1,298 2,101
16–32 434 693
32–64 168 242
464 72 218

Fold changes between the first and third quantile of expression levels across maize inbred lines
were calculated and divided into seven bins.

Table 3 | Summary of eQTLs in developing maize kernel by GWAS.

Gene Transcript

BH* Bonferroniw BH* Bonferroniw

n % n % n % n %

eQTLs
Local 9,050 55.2 7,435 68.7 13,708 62.2 10,753 73.7
Distant 7,358 44.8 3,393 31.3 8,320 37.8 3,831 26.3

Traits
With only local eQTLs 8,080 56.2 7,258 68.8 12,518 63.0 10,545 73.8
With only distant eQTLs 5,399 37.6 3,140 29.8 6,263 31.5 3,574 25.0
With local and distant eQTLs 896 6.2 154 1.5 1,092 5.5 173 1.2

BH, Benjamini–Hochberg; eQTL, expression quantitative trait loci; GWAS, genome-wide association study.
*BH threshold: Po2.12� 10� 6.
wBonferroni threshold: Po3.11� 10� 12.
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similar trends in local and distant regulatory patterns, as well as
in effect differences (Supplementary Figs S14 and S15).

When the distribution of local eQTLs, relative to their target
genes, was considered, most lead SNPs of the eQTL were located
within the gene region (Fig. 3d). Interestingly, local eQTLs had
two peaks within exonic regions at the 50- and 30-regions,
respectively. The location of local eQTLs perhaps indicates that
the 50- and 30-sequences of complementary DNAs are most
important for the regulation of gene expression or the stabiliza-
tion of mRNA.

The eQTL analysis reveals complex regulatory networks. After
the two-step analysis, eQTL regions were defined by both the lead
SNP and significantly associated flanking SNPs. Among the
16,408 eQTLs identified by the BH threshold, 15,598 eQTLs were
contained within a 10-kb region of the genome, which accounted
for 95.1% of all the detected eQTLs (Table 4). By the Bonferroni
threshold, the percentage of small-size eQTLs dropped down, but
still 93.2% of the eQTL were defined within a 10-kb region.

Over 67.7% of eQTL regions (11,115 eQTLs) were found to
include only a single gene (Supplementary Data 5) and were
involved in the regulation of 10,044 genes. The establishment of
gene-to-gene relationship revealed the specific regulatory network
affecting maize kernel development, although parts of which may
be shared between tissues24. In the regulatory networks, 455
transcription factors (TFs) were found to regulate gene expression
and 44 of these TFs were predicted to regulate the expression of

other TFs (Supplementary Table S11). Interestingly, eQTLs for 16
key genes, which have been reported to show visible mutant
phenotypes in maize kernel development25, are discovered
(Table 5). Among them, 14 genes have one eQTL and 2 genes
have two eQTLs. The mn1 gene, which encodes an endosperm-
specific cell wall invertase and determines the kernel size26, is
predicted to be regulated by a gene encoding the UDP-glycosyl
transferase (Supplementary Fig. S16).

Considering the high-level expression of zein genes in maize
kernel at 15 DAP, the expression of 34 zein family genes was
further analysed, including 29 a-zeins, 3 g-zein, 1 b-zein and 1
d-zein. The 28 a-zeins were predicted to be regulated by at least
1 eQTL. Eight a-zeins were predicted to be regulated by only local
eQTLs, 18 a-zeins were predicted to be regulated by 1 or more
distant eQTL and 2 a-zeins were predicted to be regulated by
both local and distant eQTLs. The d-zein gene was predicted to be
regulated by a local eQTL, with a significant P-value of
6.48� 10� 14. The 15-kDa b-zein was regulated by a bHLH TF
(GRMZM2G162382) and a 27-kDa g-zein was regulated by an
ARID TF (GRMZM2G138976; Fig. 4a). By connecting regulators
and their target genes, a network involving zein genes and opaque
genes were illustrated (Fig. 4b). Two eQTLs on chromosome 7
were identified to regulate two a-zein genes, and these two zein
genes were also strongly regulated by each other. The regulatory
relationships between the b-zein and bHLH gene, as well as the
g-zein and ARID gene were supported by the consistency of their
expression patterns during kernel development8 (Supplementary
Fig. S17). Moreover, several binding motifs of bHLH were found
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Table 4 | The size and average effect of eQTL region from gene expression.

Nominal P-value* Total Size of eQTL region

r10 kb 10–20 kb 420 kb

n n % Effectw n % Effectw n % Effectw

All eQTLs 2.12� 10� 6 16,408 15,598 95.1 0.154 777 4.7 0.221 33 0.2 0.257
Local eQTLs 9,050 8,514 94.1 0.167 512 5.7 0.225 24 0.3 0.265
Distant eQTLs 7,358 7,084 96.3 0.139 265 3.6 0.213 9 0.1 0.233
All eQTLs 3.11� 10� 12 10,828 10,096 93.2 0.193 701 6.5 0.234 31 0.3 0.267
Local eQTLs 7,435 6,919 93.1 0.186 492 6.6 0.230 24 0.3 0.265
Distant eQTLs 3,393 3,177 93.6 0.207 209 6.2 0.243 7 0.2 0.272

eQTL, expression quantitative trait loci.
*Benjamini–Hochberg and Bonferroni threshold, respectively.
weQTL effects were estimated by using a linear mixed model45.

Table 5 | Regulation of some key genes important for maize kernel development.

Gene
name

Gene ID Functional
description

eQTL region Genes included
in eQTL

Lead SNP P-value Mode of
regulation

ane1 GRMZM2G039942 NA M4c222230537–
M4c222236609

GRMZM2G412899 M4c222234846 7.99E� 10 Distant

ane3 GRMZM2G372553 NA M10c80735622–
M10c80739578

GRMZM2G372553,
GRMZM2G070555

M10c80737744 4.87E� 20 Local

crtRB1 GRMZM2G152135 Carotene
hydroxylase 1

M10c134804048–
M10c134806027

GRMZM2G072121,
GRMZM2G149178

M10c134804048 3.55E� 14 Distant

M10c136016907–
M10c136019300

GRMZM2G098676 M10c136019300 2.33E� 18 Distant

dek1 GRMZM2G165390 Flavonol 3-O-
glucosyltransferase

M9c11774778–
M9c11775571

GRMZM2G165390 M9c11774778 4.53E� 17 Local

emp2 GRMZM2G039155 Heat shock factor
binding protein

M2c177491686–
M2c177498364

GRMZM2G034848,
GRMZM2G397297,
GRMZM2G509619

M2c177496433 1.81E� 19 Distant

et1 GRMZM2G157574 DNL zinc finger M3c223738455–
M3c223752352

GRMZM2G157574,
GRMZM2G157588,
GRMZM2G157605,
GRMZM2G458095,
GRMZM2G458159

M3c223739390 5.08E� 19 Local

fl2 GRMZM2G397687 Alpha-zein (z1C2) M4c21320515–
M4c21320837

GRMZM2G097135 M4c21320515 2.02E� 17 Local

gol1 GRMZM2G080079 Zinc finger, C3HC4
type (RING finger)

M4c181961528–
M4c181963770

GRMZM2G080079 M4c181963756 6.55E� 23 Local

lcye1 GRMZM2G012966 Lycopene epsilon
cyclase

M8c138888143–
M8c138889317

GRMZM2G012966 M8c138889317 9.17E� 14 Local

mn1 GRMZM2G119689 Cell wall invertase M2c175628095–
M2c175628158

GRMZM2G110816 M2c175628158 1.68E�07 Distant

o2 GRMZM2G015534 bZIP transcription
factor

M7c10899414–
M7c10901030

GRMZM5G864001 M7c10900166 4.64E�08 Distant

M7c11142518–
M7c11146974

GRMZM2G333997,
GRMZM2G334041

M7c11146974 1.58E�08 Distant

sal1 GRMZM2G117935 Class E vacuolar
sorting protein

M9c94575546–
M9c94577459

GRMZM2G117935 M9c94577145 3.55E� 13 Local

vp5 GRMZM2G410515 Phytoene
desaturase

M1c17660930–
M1c17666779

GRMZM2G410515 M1c17660930 3.45E� 21 Local

vp10 GRMZM2G067176 Molybdenum
cofactor
biosynthesis protein

M10c146669342–
M10c146687358

GRMZM2G066981,
GRMZM2G067176,
GRMZM2G368898,
GRMZM2G368908

M10c146671479 2.69E� 28 Local

vp15 GRMZM2G121468 Molybdopterin
synthase small
subunit

M5c174219831–
M5c174220279

GRMZM2G121468,
GRMZM2G121525

M5c174220133 3.59E� 11 Local

wc1 GRMZM2G057243 Carotenoid
cleavage
dioxygenase

M9c152084834–
M9c152091352

GRMZM2G057243,
GRMZM2G057491

M9c152084834 3.45E� 19 Local

ane1, androgenic embryo 1; ane3, androgenic embryo 3; dek1, defective kernel 1; emp2, empty pericarp 2; et1, etched 1; fl2, floury 2; gol1, goliath 1; mn1, miniature kernel 1; o2, opaque endosperm 2; ps1, pink
scutellum 1; sal1, supernumerary aleurone 1; vp5, viviparous 5; vp10, viviparous 10; vp15, viviparous 15; wc1, white cap 1; eQTL, expression quantitative trait loci; SNP, single-nucleotide polymorphism.
The gene names used are curated by MaizeGDB68. The identity of maize gene according to the filtered-gene set (release 5b) of reference B73 genome (AGPv2). The eQTL region was defined by two
flanking associated SNPs (partial F-test).
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in the upstream region of the b-zein gene, indicating a possible
direct regulation of b-zein by the bHLH gene. The expression
of the above four genes in more than 160 inbred lines were
also validated by quantitative reverse-transcription PCR
(Supplementary Table S12). Additional coexpression analysis
detected three distinct clusters, including a large cluster with all
a-zeins (Supplementary Fig. S18).

eQTL mapping is a novel way to identify new variants.
To further evaluate the mapped eQTL in unravelling candidate
genes for interested traits, we use provitamin A–carotenoid
concentration as an example. Expression of 20 genes in the
carotenoid metabolic pathway were correlated with carotenoid
concentration (P-valueo0.05, Student’s t-test), of which six genes
(including two well-studied genes, lcye1 (ref. 27) and crtRB1 (ref.
28)) were found to have eQTLs in this study, co-located with
previously identified QTL for carotenoid-related traits in maize
kernel29–31 (Table 6). After further exploiting the genome-wide
gene expression results, in addition to lcye1, 55 genes were
correlated with carotenoid concentration at P-valueo10� 8

(|r|40.3, Student’s t-test) level, of which 19 genes had eQTLs
co-located with previously identified QTL. The results implied
that at least some of these identified genes could be the candidate
genes controlling carotenoid biosynthesis. It also suggested that

complex traits could be divided into many simple components at
the levels of transcription regulation by genome-wide correlation
between the gene expression and targeted traits, and eQTL
overlapped with expression-phenotype-associated genes were
promising variants for target traits.

We also analysed the coexpression of potential genes (Table 6)
with genes included in eQTLs. Three distinct coexpression
clusters were detected with several carotenoid-related genes
(Supplementary Fig. S19). Five out of six genes in carotenoid
metabolic pathway were classified into the coexpression clusters.
Some genes in one coexpression cluster, such as crtRB1, crtRB3
and GGPPS2, may be due to the consensus variations of common
products in the pathway.

Discussion
In this study, the gene expression profiles in developing kernels
and the sequence diversity across 368 maize inbred lines were
examined by RNA sequencing. In general, deep RNA sequencing,
a reduced genome complexity approach, provides adequate
sequence depth for SNP discovery in expressed regions without
the requirement to sample the whole plant genome32. However,
there are also some limitations in detecting variation using RNA-
seq compared with genomic resequencing. We have carefully
taken them into consideration in the experimental design and
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Figure 4 | The inferred regulatory network of the zein family genes. (a) Significant P-values from linear mixed models based on the predicted gene

expressions of zein family genes. The x axis indicates the SNP location along the ten chromosomes; the y axis is the � log10 (P-value, partial F-test)

of the association. The TF, which was located in an eQTL and included its lead SNP, is shown along the top of the eQTL region. The P-values for a-zein,

b-zein, g-zein and d-zein are indicated by different coloured dots. The boundary of BH threshold (P¼ 2.12� 10� 6) is indicated by a dash line. (b) Directed

subnetworks of several zein family genes. eQTLs with candidate regulators are connected to their target genes based on significant associations. The

directions of the arrows point from eQTLs to their target genes. The eQTL region is represented by two significantly associated flanking SNPs. The

star symbol marks the gene, which contains the lead SNP of its located eQTL. The gene names in italics represent the genes cloned from opaque mutants.
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data analyses in our study. First, maize inbred lines were used to
avoid the bias introduced by allele-specific expression. Alternative
splicing, another source of bias, leads to error mapping to reads
spanning splice junctions. Two or more such reads with high

quality (420), covering each of continuous exons at least 15 bp,
were used to support variation near the splicing site. Through
deep RNA-seq, we obtained an average of 70 million reads for
each inbred line, which resulted in the recovery of 1.03 million

Table 6 | List of genes correlated with Provitamin A cartenoid concentration.

Candidate gene Va* Annotation eQTL

r P-value Region SNPw FPCz P-valuey Mode8 QTLz

GRMZM2G164318 0.07 2.29E�01 Carotenoid
hydroxylase 3,
crtRB3

M2c15482724–
M2c15482730

M2c15482730 ctg72 9.97E� 13 Distant ctg71–75, DC

GRMZM2G102550 0.14 9.18E�03 Geranylgeranyl
pyrophosphate
synthase 2,

M7c160557779–
M7c160560878

M7c160557779 ctg322 6.48E� 24 Distant ctg323, BB

GGPPS2
GRMZM2G058404 �0.12 2.80E�02 Geranylgeranyl

pyrophosphate
synthase 3, GGPPS3

M8c6290900–
M8c6291030

M8c6290909 ctg326 2.09E� 17 Distant ctg326–329, AS, DC

GRMZM2G012966 �0.33 2.91E� 10 Lycopene epsilon
cyclase, LCYE

M8c138888143–
M8c138889317

M8c138889317 ctg355 9.17E� 14 Local ctg355, WA, BB

GRMZM2G382534 �0.12 2.73E�02 Carotenoid
hydroxylase 5,
crtRB5

M9c153692411–
M9c153694246

M9c153693422 ctg391 7.02E� 16 Local ctg391, AS, DC

GRMZM2G152135 �0.15 5.68E�03 Carotene
hydroxylase 1,
crtRB1

M10c134804048–
M10c134806027

M10c134804048 ctg414 3.55E� 14 Distant ctg414–417, AS, DC, BB

M10c136016907–
M10c136019300

M10c136019300 ctg414 2.33E� 18 Distant ctg414–417, AS, DC, BB

GRMZM2G153536 �0.31 5.13E�09 Branched-chain
amino-acid
aminotransferase

M1c29197028–
M1c29198444

M1c29197028 ctg9 5.35E� 11 Distant ctg4–10, DC

GRMZM2G108338 �0.31 2.78E�09 Steroleosin M2c68691425–
M2c68692963

M2c68691917 ctg82 4.60E� 26 Distant ctg82, AS

GRMZM2G077307 �0.33 3.78E� 10 RING finger and
CHY
zinc finger domain-
containing
protein 1

M3c201987358–
M3c201992899

M3c201987705 ctg142 1.82E� 32 Local ctg137–146, DC, BB

GRMZM2G079774 0.33 5.29E� 10 Ribosomal family
S4e

M6c86050513–
M6c86051055

M6c86051055 ctg271 5.50E�08 Distant ctg270, AS, WA, BB

GRMZM2G362470 0.36 9.58E� 12 NA M6c91569535–
M6c91569658

M6c91569584 ctg271 5.42E�09 Distant ctg270, AS, WA, BB

GRMZM2G432642 �0.30 1.23E�08 Serine/threonine
protein kinase

M7c18425877–
M7c18427870

M7c18425977 ctg297 7.22E� 16 Local ctg297, AS, DC, WA

GRMZM2G098606 �0.33 2.13E� 10 NA M7c22518076–
M7c22518967

M7c22518076 ctg298 2.62E�08 Distant ctg293–302, AS, DC,
WA

GRMZM2G098606 �0.33 2.13E� 10 NA M7c27659945–
M7c27660311

M7c27659945 ctg299 4.31E�07 Distant ctg299, AS, DC, WA

GRMZM2G470942 �0.35 4.08E� 11 NA M8c162785912–
M8c162787085

M8c162786517 ctg362 1.04E� 14 Local ctg363, DC

GRMZM2G440003 �0.34 1.49E� 10 a/b Hydrolase M8c170646517–
M8c170648381

M8c170646722 ctg364 5.34E� 10 Distant ctg363–366, DC

M8c171785151–
M8c171786458

M8c171786205 ctg365 6.03E� 21 Local ctg363–366, DC

M8c171811102–
M8c171811195

M8c171811195 ctg365 3.68E� 10 Distant ctg363–366, DC

GRMZM2G010768 �0.38 3.46E� 13 Myo-inositol-1-
phosphate
synthase

M9c149242944–
M9c149243772

M9c149243503 ctg391 4.47E� 13 Distant ctg391, AS, DC

GRMZM5G894200 �0.31 2.35E�09 NA M1c221192417–
M1c221197121

M1c221192560 ctg44 8.42E� 29 Distant ctg41–44, DC

GRMZM2G127350 �0.34 5.47E� 11 Aminotransferase
class-III

M6c153309743–
M6c153318566

M6c153313556 ctg287 7.94E� 23 Local ctg285–289, AS, DC

GRMZM2G157263 �0.33 2.97E� 10 Ferric-chelate
reductase
(NADH)2

M6c155214168–
M6c155218343

M6c155214168 ctg287 4.05E� 22 Local ctg285–289, AS, DC

GRMZM2G322953 �0.31 4.09E�09 Fructose-1-6-
bisphosphatase

M8c100869397–
M8c100874571

M8c100872915 ctg345 3.62E� 24 Local ctg329–353, AS, DC,
WA,BB

GRMZM5G889776 �0.31 2.88E�09 NA M9c135877174–
M9c135877273

M9c135877273 ctg387 1.92E� 20 Local ctg385–387, AS, DC

GRMZM2G050730 �0.31 5.39E�09 Pop3 peptide M10c4989837–
M10c4992083

M10c4991936 ctg392 3.60E� 20 Local ctg392–397, AS, DC, BB

GRMZM2G466557 �0.37 2.13E� 12 NA M10c30655494–
M10c30659397

M10c30657383 ctg398 1.68E�07 Distant ctg392–397, AS, DC, BB

AC199703.3_FG003 �0.30 1.12E�08 NA M10c34499542–
M10c34506443

M10c34503118 ctg398 1.68E� 22 Local ctg392–397, AS, DC, BB

AS, A619� SC55 F2:3 population30; BB, B73� By804 RIL population29; DC, DE3�CI7 F2:3 population30; eQTL, expression quantitative trait loci; NA, not applicable; SNP, single-nucleotide
polymorphism; WA, W64a�A632 F2:3 population31.
*Correlation of Provitamin A (Va) cartenoid concentration and candidate gene expression.
wThe lead SNP in eQTL region.
zThe eQTL was mapped onto the physical map (FPCcontig).
yThe association significance of lead SNP in eQTL region (partial F-test).
8The eQTL was classified into a local one or distant one by the distance (5 kb) to associated target gene.
zThe known or identified QTLs in three F2:3 and one RIL populations are synteney with eQTL.
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high-quality SNPs in the maize genome. The identified SNPs are
of significance to the maize research community, especially in
exploring the genetic architecture of quantitative traits in maize
using GWAS, as genomic SNPs were often used in previous
GWASs in maize, including leaf architecture33, leaf metabolites34

and disease resistance35,36. Most of the newly identified SNPs
were mapped to gene regions with an average of 40.3 SNPs per
gene, which substantially complemented the maize SNP
polymorphisms discovered by genome resequencing13,14. There
is a high concordance between our SNP data determined by
RNA-seq and those by the MaizeSNP50 BeadChip, the Sequenom
MassArray iPLEX genotyping system and direct genomic PCR
amplicon sequencing (Supplementary Tables S3–S6). Occasional
low concordant rate at a few SNP loci and inbred lines may be
explained as follows. First, plants tend to have a high frequency
of intragenomic duplications and (ancient) polyploidy37, high-
lighting the difficulty in discriminating true SNPs from
polymorphisms due to the alignment of paralogous sequences.
Second, copy number variation, which is common among maize
inbred lines38, may also lead to SNP calling errors. Third,
insertions and deletions, leading to sequence misalignment, affect
SNP calling from RNA-seq data, as shown by the high proportion
of SNP sites with low concordant rate near the InDels. Fourth, the
maize materials for genotyping by the three platforms are not
from the same plants, the residual heterozygosis of inbred lines
may also be a factor influencing the concordant rate.

Regulation of expression variation may be broadly defined by
traditional linkage studies22,39. In experimental populations from
two parental lines, eQTL mapping resolution is limited by
population size. In a recent study, the genetic resolution was
increased in an association by combining high marker density
with diverse Arabidopsis accessions, which accumulated historical
recombination and new mutations40. The degree of LD in an
association panel is a major factor affecting the resolution of QTL
mapping. By grouping adjacent associated SNPs using a distance
cutoff40,41, equivalent associations involving markers in local LD
can be combined. In inbred organisms, such as Arabidopsis and
rice, the resolution of association mapping is limited owing to an
overall high LD42,43. For maize, LD generally decays (r2o0.1)
within 2 kb in the founders of NAM population14 and within
500 bp in our diverse panel (Supplementary Fig. S20), indicating
that association studies will generally define QTLs in small
regions in such maize populations. However, both population
structure and relatedness underlines the complex LD structure
between distant markers or even across chromosomes,
introducing false-positive associations. This problem can be
partially solved by mixed modelling44,45. Our two-step approach
substantially reduced the false positives and allowed us to map
many eQTLs into small regions frequently containing a single
gene. First, a gene level distant cutoff (o5 kb) was used to group
associated SNPs into the gene space as candidate eQTL. In the
second step, the LD between the lead SNPs of the candidate eQTL
was evaluated, resulting in independent eQTLs (Supplementary
Fig. S11). Through this method, 15,598 eQTLs (95.1%) were
defined within a 10-kb region and 11,115 eQTLs of them (67.7%)
included only a single gene. In conclusion, our two-step approach
allows a finer mapping of eQTLs than what can be achieved by
simply grouping associated markers with a larger distance cutoff.

Although early eQTL studies generally included few lines
(o100), this study analysed the expression profiles of 368 diverse
maize inbred lines in developing kernel at 15 DAP. The design
combining large-scale diversity lines with deep RNA-seq can
provide sufficient coverage of gene expression and help to narrow
the eQTL to gene level, generating the hypothesis of gene
regulatory relationship. The data set in this study has been
successfully used in exploring the genetic architecture of oil

biosynthesis and accumulation in maize kernel, which is a typical
quantitative trait controlled by polygenic loci46. The results
showed that 74 highly significantly associated loci were
responsible for oil concentration and fatty acid composition5.
Twenty-one of the 74 associated polymorphisms were located in
known fatty acid biosynthesis genes, including the three
previously reported loci DGAT1-2, FATB and FAD2. Here, we
analysed the regulatory network of zein genes, which are highly
expressed during kernel development at 15 DAP7. Among the 34
zein genes detected, 31 were predicted to be regulated by at least
one eQTL. The finding of eQTLs for 16 key genes in maize kernel
development will help us in the understanding of the regulation
of these important genes. By combing the carotenoid phenotype
and expression genes in kernel, we identified 19 genes highly
associated with the phenotype and located in the known QTL
region, including two well studied genes27,28, which provided
good candidates for follow-up studies to explore the genetic basis
of carotenoid biosynthesis. These results provide the maize
community with a good resource for gene mining and the
strategy can also be applied in other kernel-related traits.
According to our knowledge, this is the first large-scale
unravelling of the regulatory network in maize developing
kernel by RNA sequencing, although further experiments will
be needed for the confirmation of these regulatory relationships.

Methods
Plant germplasm and sequencing. A maize association mapping panel consists of
508 inbred lines, including tropical, subtropical and temperate germplasms47. All
508 lines were divided into two groups (temperate and tropical/subtropical) based
on their pedigree information and planted in one-row plots in an incompletely
randomized block design within the group with two replicates in Jingzhou, Hubei
province of China in 2010. Six to eight ears in each block were self-pollinated, and
five immature seeds from three to four ears in each block were collected at 15 DAP.
The collected immature seeds in two replications were bulked for total RNA
extraction. In total, immature seeds after 15 DAP were collected from 368 maize
inbred lines. Total RNA was extracted using Bioteke RNA extraction kit (Bioteke,
Beijing, China) according to its protocol. In addition, immature seeds at 15 DAP
were also collected from maize inbred line, SK, in the Agronomy Farm, China
Agricultural University, Beijing in 2010. Library construction and Illumina
sequencing were performed as described in Supplementary Methods. The RNA
sequencing was performed twice for SK as a positive control.

Reads mapping and SNP calling. After removing reads with low sequencing
quality and reads with sequencing adapter, Short Oligonucleotide Alignment
Program 2 (ref. 12) was used to map the paired-end reads against the B73 AGPv2.
Only reads that mapped uniquely to the genome were retained for further variation
calling. Alignment results were then sorted according to their alignment position
on the chromosome and converted to SAM format. Using the Pileup command
provided by SAMtools package11, consensus sequence was generated with the
model implemented in MAQ48. Next, we used a two-step procedure to detect SNPs
by carefully considering the characteristics of RNA-seq data. In the first step, we
identified the polymorphism loci from our population. A population SNP-calling
algorithm realSFS, which takes a Bayesian approach49, was used to calculate the
likelihood of variation for each covered nucleotide from the combined data of all
the 368 inbred lines. The variations with probability o0.99 or total depth o50�
were filtered out. To further exclude possible false polymorphic sites caused by
intrinsic mapping errors, of which paralogues on the reference genome and
mapping bias inherent to the mapping algorithm represent the major sources, we
constructed a mapping error set (MES) as follows: read sequences were simulated
based on whole maize transcriptome using MAQ, no mutation was generated on
those reads sequences (� r 0). We simulated 30� coverage of the reference
genome, that is, B680 Mb reads. Simulated reads were then aligned to the
reference genome and SNPs were identified using the same strategies as in the
second step. As we did not generate any mutation while simulation, the resulting
SNPs can only explained by false positive caused by incorrectly reads mapping.
Those SNPs were termed MES and represent an inherently error-prone set of sites
that are incorrectly called owing to the nature of mapping and calling algorithms.
Any SNPs that matched the MES were removed. In the second step, we extracted
consensus base, reference base, consensus quality, SNP quality and sequencing
depth of each polymorphism locus for each inbred line using the Pileup, and then
considered the consensus base as the individual genotype with the following
requirements: if the consensus base was different from the reference base, the non-
reference allele must be the same as the non-reference allele detected from the
population and the SNP quality must be Z20. If the consensus base was the same
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as the reference base, the consensus quality must be equal to or 420 and the
minimal depth must be equal to or 45� . For sites failed to pass these criterions,
we regarded the consensus genotype as unreliable and assigned the individual
genotype of those sites as missing.

Imputation. To infer missing genotypes, we used fastPHASE (version 1.3)15, a
haplotype clustering algorithm, to impute the missing calls in the genotyping data.
fastPHASE is based on the fact that haplotypes in a population tend to cluster into
groups over short regions. For our analysis, members of a cluster were allowed to
continuously change along the chromosome, according to a hidden Markov model
that was applied to impute the missing genotypes. All heterozygous genotypes were
masked as missing data. To determine whether the imputation accuracy was
affected by the degree of the missing genotyping data, we randomly selected 1% of
the SNP sites that with missing rates varied from 10 to 90%. Next, we computed the
imputation accuracy for this subset of the SNP sites (368 samples for each site),
through randomly masking the genotype of one of the samples with a known
genotype. The accuracy of the imputation was measured by the proportion of
correctly inferred genotypes of the total masked genotypes. By varying the cutoff
rate of the missing data, the imputation accuracy and the total SNP number were
compared. Lower missing data cutoff rates had similar accuracy, but more SNP
sites were discarded. After imputation, all the SNPs were named according to their
physical positions in the B73 AGPv2. The name includes two letters and two
numbers, such as M1c379868. The first letter ‘M’ represents maize, the second
letter ‘c’ represents chromosome, the number between the two letters represents the
chromosome number and the number after the second letter represents the SNP
position in the reference genome.

Positive control. In addition, three inbred lines, each of which consists of two
replicates, were added as positive controls to the 368 inbred lines, and the same
pipeline with the same parameters was used to perform the SNP calling and
imputation. We calculated the concordant rate of each pair of positive control
samples before and after imputation. To calculate the concordant rate before
imputation, missing genotypes from either positive control sample of the pair were
not taken into account. The concordant rate was calculated as the proportion of the
genotype that was concordant of the total number of comparable SNP sites.

SNP validation. By comparing the overlapping SNP set from the same inbred line,
we estimated the concordant rate of genotypes called from this study and the
Illumina MaizeSNP50 BeadChip. The SNP density of MaizeSNP50 BeadChip
(containing 56,100 SNPs) is currently the highest among maize commercial SNP
arrays, which are designed from maize genomic SNP, most of the SNPs are
common variants. In addition, around one out of three of the SNPs located in gene
coding regions. The Illumina SNP data were first mapped to unique positions in
the B73 AGPv2 using an in silico mapping procedure, and the genotypes were
converted to be relative to the plus strand of the reference genome. The concordant
rate was calculated as the fraction of the genotypes that agreed from the total
number of overlapping SNPs. In addition, the ‘homozygous concordant rate’ was
calculated as the fraction of genotypes that agreed from the total number of
overlapping genotypes, which were all homozygous in both data sets. Missing
genotypes from either data set were not included in the concordant rate calculation.
In addition to overall concordant rates, concordant rates were also calculated for
each inbred line and each comparable SNP site.

To further validate the SNP containing rare allele, we randomly selected 355
SNPs (MAFu5%) and validated the genotypes in 96 selected maize inbred lines
through the Sequenom MassArray iPLEX genotyping system. The concordant rate
of genotypes with different classes called from this study and the Sequenom
MassArray iPLEX genotyping system was estimated using the same comparing
procedure as described in the comparison between the SNP genotypes from RNA-
seq and the Illumina MaizeSNP50 BeadChip.

SNP annotation. SNPs were categorized according to their position (intergenic,
intronic, exonic and so on) in the annotated maize genes and maize transcripts
(filtered-gene set, release 5b). For multiple transcripts from the same gene, we
defined the primary transcript with the longest CDS as the representative tran-
script, such that one SNP had a definite, unique allocation. SNPs located in the
exonic region were further categorized as CDS, 50- and 30-region, then normalized
by the total length of corresponding regions. For transcripts with more than three
exons, we also calculated the number of SNPs from the first exon, the last exon
and the middle exons. Depending on whether SNPs caused changes in the
coding of an amino acid, SNPs in the CDS region of protein-coding genes were
annotated as synonymous or non-synonymous mutations. SNPs that introduced
premature stop codons and SNPs that disrupt stop codons, initiation codon or
splice site were annotated as large-effect SNPs. The genotype variations between
our population and the B73 genome were represented as the substitution type.

Overlap with SNPs of previous studies. The SNP data of the NAM population
were downloaded from the database Panzea50. We only compared the SNPs
from the exon regions, according to the filtered-gene set (release 5b). We also

extracted the SNPs between B73 and Mo17, and compared these SNPs with our
data set.

LD decay. LD (r2) was calculated for all pairs of SNPs within 250 kb using
Haploview51. The parameters were set as follows: -n -maxdistance 250 -minMAF
0.005 -hwcutoff 0 -dprime. Average r2 within a 100-bp sliding window with
step length of 50 bp was calculated, and the average pairwise distance was
determined to be the midpoint of the window. LD decay curves were then plotted
with R script, drawing average r2 against the marker distance.

Quantification of known genes and transcripts. To quantify the gene and
transcript expression, reads were mapped to all the maize genes (filtered-gene set,
release 5b). To determine the read counts of a given gene, we summed reads that
uniquely mapped to one transcript of the gene, as well as reads that matched to
more than one genomic location in the same or in different transcripts of the gene.
As reads are generally shorter than the transcript, a single read may map to
multiple isoforms of a gene; therefore, there is some uncertainty when we count the
transcript reads. To address this uncertainty, we used the program RSEM52, which
implements generative statistical models and associated inference methods by
estimating maximum likelihood (ML) expression levels using an expectation-
maximization (EM) algorithm, to allocate reads that mapped to different isoforms
of a gene to a specific transcript. Using RPKM17, gene read counts and transcript
read counts were then normalized by scaling read counts to a total of one million
mapped reads per sample and a total gene and transcript length of 1 kb each.

Normal quantile transformation. For each sample, we included all genes with a
median expression level 40 for analyses after RPKM normalization. One of the
assumptions of detecting eQTLs through linear mixed model is that the expression
values follow a normal distribution in each genotype classes, which is violated by
outliers or non-normality in gene expression estimated from the sequencing reads.
The approach to examine the robustness of each individual model is not feasible for
the millions of models53. Thus, the expression values of each gene were normalized
using a normal quantile transformation (qqnorm function in R)54. This quantile
transformation does not fully solve the problem; it only ensures that the phenotype
is normal overall but not necessarily normal within each genotype class. However,
with the small effect sizes typical in genetic association studies, quantile
transformation is a simple, sensible way to guard against strong departures from
modelling assumptions. In an analogous manner, the distribution of expression
levels for each transcript is also normalized.

Population structure and association analysis. To estimate population structure
and kinship coefficients, 16,338 SNPs with o20% missing data and MAF 45%
were used. STRUCTURE, a Bayesian Markov Chain Monte Carlo (MCMC) pro-
gramme55, was used to infer population structure. Burn-in and MCMC replications
were both set at 10,000. The admixture model was used assuming correlated allele
frequencies among groups. Five runs at k¼ 3 were performed on the panel,
previously divided into three subgroups using 884 SNPs47. The results of the
replicate runs were integrated using the CLUMPP software56. The kinship matrix
was calculated with the same 16,338 SNPs using the method of Loiselle et al.57 The
neighbour-joining tree of 368 inbred lines was reconstructed using TreeBeST58 and
the bootstrap support for nodes was estimated to be 100. The trees were visualized
using MEGA59. To perform PCA on the individual inbred lines, SNPs after
imputation were used based on the method from Patterson et al.60 The first two
principal components were used to visualize the genetic relatedness among
individuals and investigated groups. Normal quantile transformation was used
separately for the expression levels of each gene or transcript. The associations
between the extracted SNPs with MAFZ5% and transformed expression traits
were performed using a linear mixed model44,45, incorporating population
structure and kinship using TASSEL19. The association significance of each SNP
was tested using a partial F-test calculated by residual sum of squares (RSS) of full
model and reduced model (no marker). We further estimated hidden confounding
factors contributing expression variability by Bayesian factor analysis
(implemented in PEER61). In addition to population structure, six and eight hidden
factors accounting for gene and transcript expression variability were, respectively,
retained after training (determined by automatic relevance determination62), which
were additionally included in the mixed model to examine the validity of
association significance. Heterozygous genotypes called by RNA-seq procedure
were excluded in the additional analysis.

Multiple testing correction. Each of 558,650 SNPs was tested for association with
quantification of the 28,769 genes and 42,211 transcripts. To deal with multiple
testing problem, this analysis produced a Bonferroni threshold by controlling
genome-wide error at level a¼ 0.05 using Bonferroni method (Po3.11� 10� 12 or
2.12� 10� 12), which is likely to be conservative given the LD structure across the
genome. The BH method was applied to control FDR at level a¼ 0.05. As the BH
method is simple to implement and is valid for positively correlated tests, it should
be applicable to control for errors even with linked marker QTL tests and should
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provide a better balance for declaring an excess of false-positive QTLs, sacrificing
power to detect QTLs that have smaller effects63.

Identification of eQTL. First, we grouped all the associated SNPs (BH threshold)
into one cluster if the distance between two consecutive SNPs is o5 kb. Given
previous observations that multiple SNPs within a gene are typically associated
with a trait64, the clusters with at least three significant SNPs were considered as
candidate eQTLs represented by their lead SNP. Second, a candidate eQTL in LD
(r240.1) with other more significant candidate eQTLs for the same expression trait
was regarded as false-positive associations introduced by the LD structure and were
then removed. If the significance of two candidate eQTLs is identical, the joint
effect of associated SNPs in each eQTL was estimated through multiple linear
regression (MLR), using the lm function in the R statistical computing
environment. Before fitting the model, each marker was recoded, substituting the
value 1 for inbred lines with a given allele and value 0 for all other inbred lines. The
model was then fitted using least square estimation. The forward–backward
(stepwise) selection of markers on the basis of Akaike information criterion (AIC)
was started from fitting the null model (no marker). At each forward step, the
global significance of the model was evaluated, as well as the significance of the
newly added marker. At each backward step, the least significant marker was
dropped from the model. R2 was calculated as the proportion of total phenotypic
variation explained by the optimal regression model. The eQTLs with larger joint
effects remained. The degree of LD between two candidate eQTLs was calculated
between the lead SNP in less significant eQTLs and the more significant eSNPs in
another eQTL.

The eQTL was considered local if the lead SNP was found within 20 kb of
transcription start site or transcription end site of the target gene; otherwise, the
eQTL was considered distant. Given population structure and random genetic
background, the effect of each eQTL was estimated by solving linear mixed
model45. Although non-genetic factors are likely to be important to determine gene
expression65, the simplicity of this methodology can still be used to unravel the
genetic model for gene expression. The expression atlas of maize B73 provided
orthogonal information (non-genetic variation) to support the gene regulation via
natural genetic variation8.

Network analysis. The genes and their regulators were used to construct a genetic
network. One gene that was physically located in an eQTL region and contained
the lead SNP of that eQTL was assigned as the regulator. On the basis of a
pairwise regulatory relationship, the nodes (genes) were connected by generating a
directed edge from the regulator to target gene. The annotation of TFs followed the
ProFITS database for maize66.

GO enrichment analysis. GO terms was determined by the web toolkit agriGO18

and used to assess the biological functionality of a group of genes. When five or
more mapped genes were grouped into each GO term, hypergeometric
distributions were applied to test the significance against background under the
maize genome (filtered-gene set, release 5b). The P-values were adjusted for
multiple testing by controlling FDR with the BH method.

Carotenoid quantification. The 508 inbred lines were divided into two groups
(temperate and tropical/subtropical) based on pedigree information and were
planted in one-row plots in a completely randomized block design within the group
with one replication in Ya’an, Sichuan, China, in 2009. More than 6 plants in each
row were self-pollinated and 50 kernels from equally bulked kernels for each line
were grounded for carotenoid quantification usingHPLC. Carotenoids, including
a-carotene, lutein, b-carotene, b-cryptoxanthin and zeaxanthin, were quantified by
standard regression against external standards67. The concentration of derived
provitamin A (Va) was calculated by the sum of a-carotene, b-carotene and
b-cryptoxanthin: Provitamin A¼ b-caroteneþ (a-caroteneþ b-cryptoxanthin)/2.
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